Analyzing Parallel Computing

Once again we will use image lab, this time to review Parallel Computing.

  • Change baseWidth in this line in code to increase computation requirements:def process_image(image, baseWidth=512): For instance 320, 512, 1024, 2048, 4096.- Compare Sequential and Parallel computing code and time to achieve outputs
from IPython.display import HTML, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f
from PIL import Image as pilImage # as PIL Image is used to avoid conflicts
from io import BytesIO
import base64
import numpy as np


# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Internet", 'label': "Ninja", 'file': "cool-image.jpg"}
        ]
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images

# Scale to baseWidth
def scale_image(img, baseWidth):
    scalePercent = (baseWidth/float(img.size[0]))
    scaleHeight = int((float(img.size[1])*float(scalePercent)))
    scale = (baseWidth, scaleHeight)
    return img.resize(scale)

# PIL image converted to base64
def image_to_base64(img, format):
    with BytesIO() as buffer:
        img.save(buffer, format)
        return base64.b64encode(buffer.getvalue()).decode()
    
# Convert pixels to Grey Scale
def grey_pixel(pixel):
    average = (pixel[0] + pixel[1] + pixel[2]) // 3  # average pixel values and use // for integer division
    if len(pixel) > 3:
        return( (average, average, average, pixel[3]) ) # PNG format
    else:
        return( (average, average, average) )
    
# Convert pixels to Red Scale
def red_pixel(pixel):
    if len(pixel) > 3:
        return( (pixel[0], 0, 0, pixel[3]) ) # PNG format
    else:
        return( (pixel[0], 0, 0) )
    
# Convert pixels to Red Scale
def green_pixel(pixel):
    if len(pixel) > 3:
        return( (0, pixel[1], 0, pixel[3]) ) # PNG format
    else:
        return( (0, pixel[1], 0) )
    
# Convert pixels to Red Scale
def blue_pixel(pixel):
    if len(pixel) > 3:
        return( (0, 0, pixel[2], pixel[3]) ) # PNG format
    else:
        return( (0, 0, pixel[2]) )
        
# Set Properties of Image, Scale, and convert to Base64
def image_management(image, baseWidth):  # path of static images is defaulted        
    # Image open return PIL image object
    img = pilImage.open(image['filename'])
    
    # Python Image Library operations
    image['format'] = img.format
    image['mode'] = img.mode
    image['size'] = img.size
    # Scale the Image
    img = scale_image(img, baseWidth)
    image['pil'] = img
    image['scaled_size'] = img.size
    image['numpy'] = np.array(img.getdata())
    # Scaled HTML
    image['html'] = '<img src="data:image/png;base64,%s">' % image_to_base64(image['pil'], image['format'])
    
    # Grey HTML
    # each pixel in numpy array is turned to grey 
    # then resulting list, using List Comprehension, is put back into img    
    img.putdata([grey_pixel(pixel) for pixel in image['numpy']])
    image['html_grey'] =  '<img src="data:image/png;base64,%s">' % image_to_base64(img, image['format'])
    
    # Red HTML
    img.putdata([red_pixel(pixel) for pixel in image['numpy']])
    image['html_red'] =  '<img src="data:image/png;base64,%s">' % image_to_base64(img, image['format'])
    
    # Green HTML
    img.putdata([green_pixel(pixel) for pixel in image['numpy']])
    image['html_green'] =  '<img src="data:image/png;base64,%s">' % image_to_base64(img, image['format'])
    
    # Blue HTML
    img.putdata([blue_pixel(pixel) for pixel in image['numpy']])
    image['html_blue'] =  '<img src="data:image/png;base64,%s">' % image_to_base64(img, image['format'])
    
    
def process_image(image, baseWidth=320):
    image_management(image, baseWidth)
    print("---- meta data -----")
    print(image['label'])
    print(image['source'])
    print(image['format'])
    print(image['mode'])
    print("Original size: ", image['size'])
    print("Scaled size: ", image['scaled_size'])
    
    print("-- images --")
    display(HTML(image['html'])) 
    display(HTML(image['html_grey'])) 
    display(HTML(image['html_red'])) 
    display(HTML(image['html_green'])) 
    display(HTML(image['html_blue'])) 

Sequential Processing

The for loop iterates over the list of images and processes them one at a time, in order.

if __name__ == "__main__":
    # setup default images
    images = image_data()

    # Sequential Processing    
    for image in images:
        process_image(image)
        
    print()
---- meta data -----
Ninja
Internet
JPEG
RGB
Original size:  (2048, 1152)
Scaled size:  (320, 180)
-- images --

Parallel Computing

In parallel or concurrent mode, the ThreadPoolExecutor is used to submit each image to a separate worker thread, allowing multiple images to be processed simultaneously. Multithreading allows multiple concurrent tasks of a process at the same time. The executor.map() method is used to apply the process_image function to each image in the images list.

  • The order in which the images are processed is not guaranteed, as threads are performed simultaneously.
import concurrent.futures

# Jupyter Notebook Visualization of Images
if __name__ == "__main__":
    # setup default images
    images = image_data()
    
    # Parallel Processsing
    # executor allocates threads, it considers core execution capability of machine
    with concurrent.futures.ThreadPoolExecutor() as executor:
        executor.map(process_image, images)  # order is not predictable
        
    print()
---- meta data -----
Ninja
Internet
JPEG
RGB
Original size:  (2048, 1152)
Scaled size:  (320, 180)
-- images --

Observing Parallel Computing and Threads

You can observe Processes, CPU Percentage, and Threads with Tools on your machine. Common tools to monitor performance are Activity Monitor on MacOS or Task Manager on Windows.

  • This example is using top launched in VSCode Terminal. (mac)
  • Try top -H for linux.
    • PID is Process ID.
    • COMMAND is task running on machine. Python is activated when running this Jupyter notebook.
    • #TH is number of threads. This increases from 15/1 to 18/1 on my machine when running python parallel computing example.

Hacks

AP Classroom. Provide answers and thoughts on theoritical question form college board Video in section 4.3. They start at about the 9 minute mark.

  • Example 1
  • Example 2

Data Structures. Build a List Comprehension example

  • list = [calc(item) for item in items]

Hacks Answered

AP Classroom questions

  • Example 1 - The minimum amount of time to execute all 3 processes is around 50 seconds. Since there are 10, 30, and 50 second processes, one processor can execute the 50 second process while the other processor can execute the 10 and then 30 second processes for a total of 40.
  • Example 2 - The difference in execution time between running the two processes in parallel and running them one after the other is 25 seconds. Running them parallel would take a minimum of 45 seconds but running them one after the other in one processor will take 70 seconds, and the difference is 25 seconds.
  • Example 3 - Processes A and B should be assigned to one processor and processes C and D should be assigned to another processor. Both pairs have a total time of 50, enablinb the minimum amount of time total with this assignment.

List Comprehension

cars = ["Lamborghini", "Bugatti", "Aston Martin", "Ferrari", "Rolls Royce"]

newcars = [x for x in cars]
newcars2 = [x for x in cars if x != "Bugatti"]
newcars3 = [x for x in cars if cars.index(x) > 3]

print(newcars)
print(newcars2)
print(newcars3)
['Lamborghini', 'Bugatti', 'Aston Martin', 'Ferrari', 'Rolls Royce']
['Lamborghini', 'Aston Martin', 'Ferrari', 'Rolls Royce']
['Rolls Royce']
track = {
    "Cam":4.17,
    "Stanley": 4.34,
    "Luke":4.34,
    "Josh":4.47,
    "Arnav":4.48,
    "Ben":4.53
}
newtrack = [x for x in track]
newtrack2 = [x for x in track if track[x] < 4.35]
newtrack3 = [x for x in track if "a" in x]

print(newtrack)
print(newtrack2)
print(newtrack3)
['Cam', 'Stanley', 'Luke', 'Josh', 'Arnav', 'Ben']
['Cam', 'Stanley', 'Luke']
['Cam', 'Stanley', 'Arnav']